Abstract
AbstractQuantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties separately and attribute the uncertainties to atoms present in the molecule. The atom-based uncertainty method provides an extra layer of chemical insight to the estimated uncertainties, i.e., one can analyze individual atomic uncertainty values to diagnose the chemical component that introduces uncertainty to the prediction. Our experiments suggest that atomic uncertainty can detect unseen chemical structures and identify chemical species whose data are potentially associated with significant noise. Furthermore, we propose a post-hoc calibration method to refine the uncertainty quantified by ensemble models for better confidence interval estimates. This work improves uncertainty calibration and provides a framework for assessing whether and why a prediction should be considered unreliable.
Graphical Abstract
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献