Off-targetP ML: an open source machine learning framework for off-target panel safety assessment of small molecules

Author:

Naga Doha,Muster Wolfgang,Musvasva Eunice,Ecker Gerhard F.

Abstract

AbstractUnpredicted drug safety issues constitute the majority of failures in the pharmaceutical industry according to several studies. Some of these preclinical safety issues could be attributed to the non-selective binding of compounds to targets other than their intended therapeutic target, causing undesired adverse events. Consequently, pharmaceutical companies routinely run in-vitro safety screens to detect off-target activities prior to preclinical and clinical studies. Hereby we present an open source machine learning framework aiming at the prediction of our in-house 50 off-target panel activities for ~ 4000 compounds, directly from their structure. This framework is intended to guide chemists in the drug design process prior to synthesis and to accelerate drug discovery. We also present a set of ML approaches that require minimum programming experience for deployment. The workflow incorporates different ML approaches such as deep learning and automated machine learning. It also accommodates popular issues faced in bioactivity predictions, as data imbalance, inter-target duplicated measurements and duplicated public compound identifiers. Throughout the workflow development, we explore and compare the capability of Neural Networks and AutoML in constructing prediction models for fifty off-targets of different protein classes, different dataset sizes, and high-class imbalance. Outcomes from different methods are compared in terms of efficiency and efficacy. The most important challenges and factors impacting model construction and performance in addition to suggestions on how to overcome such challenges are also discussed.

Funder

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3