Author:
Xu Zhanpeng,Li Jianhua,Yang Zhaopeng,Li Shiliang,Li Honglin
Abstract
AbstractOptical chemical structure recognition from scientific publications is essential for rediscovering a chemical structure. It is an extremely challenging problem, and current rule-based and deep-learning methods cannot achieve satisfactory recognition rates. Herein, we propose SwinOCSR, an end-to-end model based on a Swin Transformer. This model uses the Swin Transformer as the backbone to extract image features and introduces Transformer models to convert chemical information from publications into DeepSMILES. A novel chemical structure dataset was constructed to train and verify our method. Our proposed Swin Transformer-based model was extensively tested against the backbone of existing publicly available deep learning methods. The experimental results show that our model significantly outperforms the compared methods, demonstrating the model’s effectiveness. Moreover, we used a focal loss to address the token imbalance problem in the text representation of the chemical structure diagram, and our model achieved an accuracy of 98.58%.
Funder
Important Drug Development Fund, Ministry of Science and Technology of China
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献