SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer

Author:

Xu Zhanpeng,Li Jianhua,Yang Zhaopeng,Li Shiliang,Li Honglin

Abstract

AbstractOptical chemical structure recognition from scientific publications is essential for rediscovering a chemical structure. It is an extremely challenging problem, and current rule-based and deep-learning methods cannot achieve satisfactory recognition rates. Herein, we propose SwinOCSR, an end-to-end model based on a Swin Transformer. This model uses the Swin Transformer as the backbone to extract image features and introduces Transformer models to convert chemical information from publications into DeepSMILES. A novel chemical structure dataset was constructed to train and verify our method. Our proposed Swin Transformer-based model was extensively tested against the backbone of existing publicly available deep learning methods. The experimental results show that our model significantly outperforms the compared methods, demonstrating the model’s effectiveness. Moreover, we used a focal loss to address the token imbalance problem in the text representation of the chemical structure diagram, and our model achieved an accuracy of 98.58%.

Funder

Important Drug Development Fund, Ministry of Science and Technology of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3