Author:
Choi Jonghwan,Seo Sangmin,Park Sanghyun
Abstract
Abstract
Background
Structure-constrained molecular generation is a promising approach to drug discovery. The goal of structure-constrained molecular generation is to produce a novel molecule that is similar to a given source molecule (e.g. hit molecules) but has enhanced chemical properties (for lead optimization). Many structure-constrained molecular generation models with superior performance in improving chemical properties have been proposed; however, they still have difficulty producing many novel molecules that satisfy both the high structural similarities to each source molecule and improved molecular properties.
Methods
We propose a structure-constrained molecular generation model that utilizes contractive and margin loss terms to simultaneously achieve property improvement and high structural similarity. The proposed model has two training phases; a generator first learns molecular representation vectors using metric learning with contractive and margin losses and then explores optimized molecular structure for target property improvement via reinforcement learning.
Results
We demonstrate the superiority of our proposed method by comparing it with various state-of-the-art baselines and through ablation studies. Furthermore, we demonstrate the use of our method in drug discovery using an example of sorafenib-like molecular generation in patients with drug resistance.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献