COMA: efficient structure-constrained molecular generation using contractive and margin losses

Author:

Choi Jonghwan,Seo Sangmin,Park Sanghyun

Abstract

Abstract Background Structure-constrained molecular generation is a promising approach to drug discovery. The goal of structure-constrained molecular generation is to produce a novel molecule that is similar to a given source molecule (e.g. hit molecules) but has enhanced chemical properties (for lead optimization). Many structure-constrained molecular generation models with superior performance in improving chemical properties have been proposed; however, they still have difficulty producing many novel molecules that satisfy both the high structural similarities to each source molecule and improved molecular properties. Methods We propose a structure-constrained molecular generation model that utilizes contractive and margin loss terms to simultaneously achieve property improvement and high structural similarity. The proposed model has two training phases; a generator first learns molecular representation vectors using metric learning with contractive and margin losses and then explores optimized molecular structure for target property improvement via reinforcement learning. Results We demonstrate the superiority of our proposed method by comparing it with various state-of-the-art baselines and through ablation studies. Furthermore, we demonstrate the use of our method in drug discovery using an example of sorafenib-like molecular generation in patients with drug resistance.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3