Principles and requirements for nanomaterial representations to facilitate machine processing and cooperation with nanoinformatics tools

Author:

Blekos Kostas,Chairetakis Kostas,Lynch Iseult,Marcoulaki Effie

Abstract

AbstractEfficient and machine-readable representations are needed to accurately identify, validate and communicate information of chemical structures. Many such representations have been developed (as, for example, the Simplified Molecular-Input Line-Entry System and the IUPAC International Chemical Identifier), each offering advantages specific to various use-cases. Representation of the multi-component structures of nanomaterials (NMs), though, remains out of scope for all the currently available standards, as the nature of NMs sets new challenges on formalizing the encoding of their structure, interactions and environmental parameters. In this work we identify a set of principles that a NM representation should adhere to in order to provide “machine-friendly” encodings of NMs, i.e. encodings that facilitate machine processing and cooperation with nanoinformatics tools. We illustrate our principles by showing how the recently introduced InChI-based NM representation, might be augmented, in principle, to also encode morphology and mixture properties, distributions of properties, and also to capture auxiliary information and allow data reuse.

Funder

European Commission

Internal funding

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Reference43 articles.

1. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Materiomics 3:159–177. https://doi.org/10.1016/j.jmat.2017.08.002

2. Donskyi I, Drüke M, Silberreis K, Lauster D, Ludwig K, Kühne C, Unger W, Böttcher C, Herrmann A, Dernedde J, Adeli M, Haag R (2018) Interactions of fullerene-polyglycerol sulfates at viral and cellular interfaces. Small 14:1800189. https://doi.org/10.1002/smll.201800189

3. Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–1693. https://doi.org/10.1016/j.addr.2012.05.014

4. Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I (2020) NanoSolveIT project: driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 18:583–602. https://doi.org/10.1016/j.csbj.2020.02.023

5. Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K (2018) Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol 13:537–543. https://doi.org/10.1038/s41565-018-0185-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3