Author:
Blekos Kostas,Chairetakis Kostas,Lynch Iseult,Marcoulaki Effie
Abstract
AbstractEfficient and machine-readable representations are needed to accurately identify, validate and communicate information of chemical structures. Many such representations have been developed (as, for example, the Simplified Molecular-Input Line-Entry System and the IUPAC International Chemical Identifier), each offering advantages specific to various use-cases. Representation of the multi-component structures of nanomaterials (NMs), though, remains out of scope for all the currently available standards, as the nature of NMs sets new challenges on formalizing the encoding of their structure, interactions and environmental parameters. In this work we identify a set of principles that a NM representation should adhere to in order to provide “machine-friendly” encodings of NMs, i.e. encodings that facilitate machine processing and cooperation with nanoinformatics tools. We illustrate our principles by showing how the recently introduced InChI-based NM representation, might be augmented, in principle, to also encode morphology and mixture properties, distributions of properties, and also to capture auxiliary information and allow data reuse.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献