Author:
Jeevan Kandel,Palistha Shrestha,Tayara Hilal,Chong Kil T.
Abstract
AbstractAccurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.
Funder
National Research Foundation of Korea
The
Ministry of Trade, Industry & Energy, Republic of Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献