Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models

Author:

Tayyebi Arash,Alshami Ali S,Rabiei Zeinab,Yu Xue,Ismail Nadhem,Talukder Musabbir Jahan,Power Jason

Abstract

AbstractA reliable and practical determination of a chemical species’ solubility in water continues to be examined using empirical observations and exhaustive experimental studies alone. Predictions of chemical solubility in water using data-driven algorithms can allow us to create a rationally designed, efficient, and cost-effective tool for next-generation materials and chemical formulations. We present results from two machine learning (ML) modeling studies to adequately predict various species’ solubility using data for over 8400 compounds. Molecular-descriptors, the most used method in previous studies, and Morgan fingerprint, a circular-based hash of the molecules' structures, were applied to produce water solubility estimates. We trained all models on 80% of the total datasets using the Random Forest (RFs) technique as the regressor and tested the prediction performance using the remaining 20%, resulting in coefficient of determination (R2) test values of 0.88 and 0.81 and root-mean-square deviation (RMSE) test values 0.64 and 0.80 for the descriptors and circular fingerprint methods, respectively. We interpreted the produced ML models and reported the most effective features for aqueous solubility measures using the Shapley Additive exPlanations (SHAP) and thermodynamic analysis. Low error, ability to investigate the molecular-level interactions, and compatibility with thermodynamic quantities made the fingerprint method a distinct model compared to other available computational tools. However, it is worth emphasizing that physicochemical descriptor model outperformed the fingerprint model in achieving better predictive accuracy for the given test set.

Funder

City of Grand Forks

State of North Dakota

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3