Selecting lines for spectroscopic (re)measurements to improve the accuracy of absolute energies of rovibronic quantum states
-
Published:2021-09-16
Issue:1
Volume:13
Page:
-
ISSN:1758-2946
-
Container-title:Journal of Cheminformatics
-
language:en
-
Short-container-title:J Cheminform
Author:
Árendás PéterORCID, Furtenbacher TiborORCID, Császár Attila G.ORCID
Abstract
AbstractImproving the accuracy of absolute energies associated with rovibronic quantum states of molecules requires accurate high-resolution spectroscopy measurements. Such experiments yield transition wavenumbers from which the energies can be deduced via inversion procedures. To address the problem that not all transitions contribute equally to the goal of improving the accuracy of the energies, the method of Connecting Spectroscopic Components (CSC) is introduced. Using spectroscopic networks and tools of graph theory, CSC helps to find the most useful target transitions and target wavenumber regions for (re)measurement. The sets of transitions suggested by CSC should be investigated by experimental research groups in order to select those target lines which they can actually measure based on the apparatus available to them. The worked-out examples, utilizing extensive experimental spectroscopic data on the molecules H$$_2^{~16}$$
2
16
O, $$^{32}$$
32
S$$^{16}$$
16
O$$_2$$
2
, H$$_2^{~12}$$
2
12
C$$^{16}$$
16
O, and $$^{14}$$
14
NH$$_{3}$$
3
, clearly prove the overall usefulness of the CSC method and provide suggestions how CSC can be used for various tasks and under different practical circumstances.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal Eötvös Loránd Tudományegyetem
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Reference27 articles.
1. Quack M, Merkt (Eds.), F, (2011) Handbook of high-resolution spectroscopy. Wiley, Chichester 2. Császár AG, Fábri C, Szidarovszky T, Mátyus E, Furtenbacher T, Czakó G (2012) The fourth age of quantum chemistry: molecules in motion. Phys Chem Chem Phys 14:1085–1106 3. Ritz W (1908) On a new law of series spectra. Astrophys J 28:237–243 4. ...Gordon IE, Rothman LS, Hill C, Kochanov RV, Tan Y, Bernath PF, Birk M, Boudon V, Campargue A, Chance KV, Drouin BJ, Flaud J-M, Gamache RR, Hodges JT, Jacquemart D, Perevalov VI, Perrin A, Shine KP, Smith M-AH, Tennyson J, Toon GC, Tran H, Tyuterev VG, Barbe A, Császár AG, Devi VM, Furtenbacher T, Harrison JJ, Hartmann J-M, Jolly A, Johnson TJ, Karman T, Kleiner I, Kyuberis AA, Loos J, Lyulin OM, Massie ST, Mikhailenko SN, Moazzen-Ahmadi N, Müller HSP, Naumenko OV, Nikitin AV, Polyansky OL, Rey M, Rotger M, Sharpe SW, Sung K, Starikova E, Tashkun SA, Auwera JV, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak EJ (2017) The HITRAN 2016 molecular spectroscopic database. J Quant Spectrosc Rad Transfer 203:3–69 5. ReSpecTh website. http://www.respecth.hu/. Accessed 29 Apr 2021
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|