Extended study on atomic featurization in graph neural networks for molecular property prediction

Author:

Wojtuch Agnieszka,Danel Tomasz,Podlewska Sabina,Maziarka Łukasz

Abstract

AbstractGraph neural networks have recently become a standard method for analyzing chemical compounds. In the field of molecular property prediction, the emphasis is now on designing new model architectures, and the importance of atom featurization is oftentimes belittled. When contrasting two graph neural networks, the use of different representations possibly leads to incorrect attribution of the results solely to the network architecture. To better understand this issue, we compare multiple atom representations by evaluating them on the prediction of free energy, solubility, and metabolic stability using graph convolutional networks. We discover that the choice of atom representation has a significant impact on model performance and that the optimal subset of features is task-specific. Additional experiments involving more sophisticated architectures, including graph transformers, support these findings. Moreover, we demonstrate that some commonly used atom features, such as the number of neighbors or the number of hydrogens, can be easily predicted using only information about bonds and atom type, yet their explicit inclusion in the representation has a positive impact on model performance. Finally, we explain the predictions of the best-performing models to better understand how they utilize the available atomic features.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3