Abstract
AbstractAromatic rings are important residues for biological interactions and appear to a large extent as part of protein–drug and protein–protein interactions. They are relevant for both protein stability and molecular recognition processes due to their natural occurrence in aromatic aminoacids (Trp, Phe, Tyr and His) as well as in designed drugs since they are believed to contribute to optimizing both affinity and specificity of drug-like molecules. Despite the mentioned relevance, the impact of aromatic clusters on protein–protein and protein–drug complexes is still poorly characterized, especially in those that go beyond a dimer. In this work, we studied protein–drug and protein–protein complexes and systematically analyzed the presence and structure of their aromatic clusters. Our results show that aromatic clusters are highly prevalent in both protein–protein and protein–drug complexes, and suggest that protein–protein aromatic clusters have idealized interactions, probably because they were optimized by evolution, as compared to protein–drug clusters that were manually designed. Interestingly, the configuration, solvent accessibility and secondary structure of aromatic residues in protein–drug complexes shed light on the relation between these properties and compound affinity, allowing researchers to better design new molecules.
Funder
Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
Fondo para la Investigación Científica y Tecnológica
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献