Abstract
AbstractStructural information about chemical compounds is typically conveyed as 2D images of molecular structures in scientific documents. Unfortunately, these depictions are not a machine-readable representation of the molecules. With a backlog of decades of chemical literature in printed form not properly represented in open-access databases, there is a high demand for the translation of graphical molecular depictions into machine-readable formats. This translation process is known as Optical Chemical Structure Recognition (OCSR). Today, we are looking back on nearly three decades of development in this demanding research field. Most OCSR methods follow a rule-based approach where the key step of vectorization of the depiction is followed by the interpretation of vectors and nodes as bonds and atoms. Opposed to that, some of the latest approaches are based on deep neural networks (DNN). This review provides an overview of all methods and tools that have been published in the field of OCSR. Additionally, a small benchmark study was performed with the available open-source OCSR tools in order to examine their performance.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献