A review of optical chemical structure recognition tools

Author:

Rajan Kohulan,Brinkhaus Henning Otto,Zielesny Achim,Steinbeck ChristophORCID

Abstract

AbstractStructural information about chemical compounds is typically conveyed as 2D images of molecular structures in scientific documents. Unfortunately, these depictions are not a machine-readable representation of the molecules. With a backlog of decades of chemical literature in printed form not properly represented in open-access databases, there is a high demand for the translation of graphical molecular depictions into machine-readable formats. This translation process is known as Optical Chemical Structure Recognition (OCSR). Today, we are looking back on nearly three decades of development in this demanding research field. Most OCSR methods follow a rule-based approach where the key step of vectorization of the depiction is followed by the interpretation of vectors and nodes as bonds and atoms. Opposed to that, some of the latest approaches are based on deep neural networks (DNN). This review provides an overview of all methods and tools that have been published in the field of OCSR. Additionally, a small benchmark study was performed with the available open-source OCSR tools in order to examine their performance.

Funder

Carl-Zeiss-Stiftung

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing;International Journal on Document Analysis and Recognition (IJDAR);2024-07-05

2. Advancements in hand-drawn chemical structure recognition through an enhanced DECIMER architecture;Journal of Cheminformatics;2024-07-05

3. OpenChemIE: An Information Extraction Toolkit for Chemistry Literature;Journal of Chemical Information and Modeling;2024-07-01

4. Image2InChI: Automated Molecular Optical Image Recognition;Journal of Chemical Information and Modeling;2024-02-15

5. Automation and machine learning augmented by large language models in a catalysis study;Chemical Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3