Abstract
Abstract
De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, and deep learning has been recognized as a promising solution. In this study, I developed an effective computational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the future of drug discovery and development.
Scientific contribution
The scientific contribution of this study lies in the development of the Scoring-Assisted Generative Exploration (SAGE) method, a novel computational approach that significantly enhances de novo molecular design. SAGE uniquely integrates virtual synthesis simulation, the generation of complex bridged bicyclic rings, and multiple scoring models to optimize drug-like properties comprehensively. By efficiently generating molecules that meet a broad spectrum of pharmacological criteria—including target specificity, synthetic accessibility, solubility, and metabolic stability—within a reasonable number of steps, SAGE represents a substantial advancement over traditional methods. Additionally, the application of SAGE to discover dual inhibitors for acetylcholinesterase and monoamine oxidase B not only demonstrates its potential to streamline and enhance the drug development process but also highlights its capacity to create more effective and precisely targeted therapies. This study emphasizes the critical and evolving role of de novo design strategies in reshaping the future of drug discovery and development, providing promising avenues for innovative therapeutic discoveries.
Funder
the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献