Generative design of compounds with desired potency from target protein sequences using a multimodal biochemical language model

Author:

Chen Hengwei,Bajorath Jürgen

Abstract

Abstract Deep learning models adapted from natural language processing offer new opportunities for the prediction of active compounds via machine translation of sequential molecular data representations. For example, chemical language models are often derived for compound string transformation. Moreover, given the principal versatility of language models for translating different types of textual representations, off-the-beaten-path design tasks might be explored. In this work, we have investigated generative design of active compounds with desired potency from target sequence embeddings, representing a rather provoking prediction task. Therefore, a dual-component conditional language model was designed for learning from multimodal data. It comprised a protein language model component for generating target sequence embeddings and a conditional transformer for predicting new active compounds with desired potency. To this end, the designated “biochemical” language model was trained to learn mappings of combined protein sequence and compound potency value embeddings to corresponding compounds, fine-tuned on individual activity classes not encountered during model derivation, and evaluated on compound test sets that were structurally distinct from training sets. The biochemical language model correctly reproduced known compounds with different potency for all activity classes, providing proof-of-concept for the approach. Furthermore, the conditional model consistently reproduced larger numbers of known compounds as well as more potent compounds than an unconditional model, revealing a substantial effect of potency conditioning. The biochemical language model also generated structurally diverse candidate compounds departing from both fine-tuning and test compounds. Overall, generative compound design based on potency value-conditioned target sequence embeddings yielded promising results, rendering the approach attractive for further exploration and practical applications. Scientific contribution The approach introduced herein combines protein language model and chemical language model components, representing an advanced architecture, and is the first methodology for predicting compounds with desired potency from conditioned protein sequence data.

Funder

China Scholarship Council

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3