HybridGCN for protein solubility prediction with adaptive weighting of multiple features

Author:

Chen Long,Wu Rining,Zhou Feixiang,Zhang Huifeng,Liu Jian K.

Abstract

AbstractThe solubility of proteins stands as a pivotal factor in the realm of pharmaceutical research and production. Addressing the imperative to enhance production efficiency and curtail experimental costs, the demand arises for computational models adept at accurately predicting solubility based on provided datasets. Prior investigations have leveraged deep learning models and feature engineering techniques to distill features from raw protein sequences for solubility prediction. However, these methodologies have not thoroughly delved into the interdependencies among features or their respective magnitudes of significance. This study introduces HybridGCN, a pioneering Hybrid Graph Convolutional Network that elevates solubility prediction accuracy through the combination of diverse features, encompassing sophisticated deep-learning features and classical biophysical features. An exploration into the intricate interplay between deep-learning features and biophysical features revealed that specific biophysical attributes, notably evolutionary features, complement features extracted by advanced deep-learning models. Augmenting the model’s capability for feature representation, we employed ESM, a substantial protein language model, to derive a zero-shot learning feature capturing comprehensive and pertinent information concerning protein functions and structures. Furthermore, we proposed a novel feature fusion module termed Adaptive Feature Re-weighting (AFR) to integrate multiple features, thereby enabling the fine-tuning of feature importance. Ablation experiments and comparative analyses attest to the efficacy of the HybridGCN approach, culminating in state-of-the-art performances on the public eSOL and S. cerevisiae datasets.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3