Sequence-based prediction of protein binding regions and drug–target interactions

Author:

Lee Ingoo,Nam HojungORCID

Abstract

AbstractIdentifying drug–target interactions (DTIs) is important for drug discovery. However, searching all drug–target spaces poses a major bottleneck. Therefore, recently many deep learning models have been proposed to address this problem. However, the developers of these deep learning models have neglected interpretability in model construction, which is closely related to a model’s performance. We hypothesized that training a model to predict important regions on a protein sequence would increase DTI prediction performance and provide a more interpretable model. Consequently, we constructed a deep learning model, named Highlights on Target Sequences (HoTS), which predicts binding regions (BRs) between a protein sequence and a drug ligand, as well as DTIs between them. To train the model, we collected complexes of protein–ligand interactions and protein sequences of binding sites and pretrained the model to predict BRs for a given protein sequence–ligand pair via object detection employing transformers. After pretraining the BR prediction, we trained the model to predict DTIs from a compound token designed to assign attention to BRs. We confirmed that training the BRs prediction model indeed improved the DTI prediction performance. The proposed HoTS model showed good performance in BR prediction on independent test datasets even though it does not use 3D structure information in its prediction. Furthermore, the HoTS model achieved the best performance in DTI prediction on test datasets. Additional analysis confirmed the appropriate attention for BRs and the importance of transformers in BR and DTI prediction. The source code is available on GitHub (https://github.com/GIST-CSBL/HoTS).

Funder

national research foundation of korea

gwangju institute of science and technology

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3