ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding

Author:

Wang Junjie,Wen NaiFeng,Wang Chunyu,Zhao LinglingORCID,Cheng Liang

Abstract

Abstract Motivation Drug-target binding affinity (DTA) reflects the strength of the drug-target interaction; therefore, predicting the DTA can considerably benefit drug discovery by narrowing the search space and pruning drug-target (DT) pairs with low binding affinity scores. Representation learning using deep neural networks has achieved promising performance compared with traditional machine learning methods; hence, extensive research efforts have been made in learning the feature representation of proteins and compounds. However, such feature representation learning relies on a large-scale labelled dataset, which is not always available. Results We present an end-to-end deep learning framework, ELECTRA-DTA, to predict the binding affinity of drug-target pairs. This framework incorporates an unsupervised learning mechanism to train two ELECTRA-based contextual embedding models, one for protein amino acids and the other for compound SMILES string encoding. In addition, ELECTRA-DTA leverages a squeeze-and-excitation (SE) convolutional neural network block stacked over three fully connected layers to further capture the sequential and spatial features of the protein sequence and SMILES for the DTA regression task. Experimental evaluations show that ELECTRA-DTA outperforms various state-of-the-art DTA prediction models, especially with the challenging, interaction-sparse BindingDB dataset. In target selection and drug repurposing for COVID-19, ELECTRA-DTA also offers competitive performance, suggesting its potential in speeding drug discovery and generalizability for other compound- or protein-related computational tasks.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3