Author:
Kondratyev Vladimir,Dryzhakov Marian,Gimadiev Timur,Slutskiy Dmitriy
Abstract
AbstractIn this work, we provide further development of the junction tree variational autoencoder (JT VAE) architecture in terms of implementation and application of the internal feature space of the model. Pretraining of JT VAE on a large dataset and further optimization with a regression model led to a latent space that can solve several tasks simultaneously: prediction, generation, and optimization. We use the ZINC database as a source of molecules for the JT VAE pretraining and the QM9 dataset with its HOMO values to show the application case. We evaluate our model on multiple tasks such as property (value) prediction, generation of new molecules with predefined properties, and structure modification toward the property. Across these tasks, our model shows improvements in generation and optimization tasks while preserving the precision of state-of-the-art models.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献