Author:
Azhdarpoor Abooalfazl,Mortazavi Bagher,Moussavi Gholamreza
Abstract
Abstract
Background
Discharging the oily wastewater in the environment causes serious problems, because of the oil compounds and organic materials presence. Applying biological methods using the lipase enzyme producer microorganisms can be an appropriate choice for treatment of these wastewaters. The aim of this study is to treat those oil wastewaters having high concentration of oil by applying lipase enzyme producer bacteria.
Materials and methods
Oil concentration measurement was conducted using the standard method of gravimetric and the wastewater under study was synthetically made and contained olive, canola and sunflower oil. The strain used in this study was Pseudomonas strain isolated from compost fertilizer. The oil under study had concentration of 1.5 to 22 g/l.
Results
The oil removal amount in concentrations lower than 8.4 g/l was over 95 ± 1.5%. Increase of the oil's concentration to 22 g/l decreases the amount of removal in retention time of 44 hours to 85 ± 2.5%. The best yield of removing this strain in retention time of 44 hours and temperature of 30°C was achieved using Ammonium Nitrate as the nitrogen resource which yield was about 95 percent.
Conclusion
The findings of the research showed that Pseudomonas bacteria isolated from the compost fertilizer can degrade high concentration oils.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering
Reference26 articles.
1. Chien L, Wen C, Joshu C: Methods for rapid screening and isolation of bacteria producing acidic lipase: feasibility studies and novel activity assay protocols. World J Microbiol Biotechnol 2007, 23: 633–640. 10.1007/s11274-006-9272-8
2. Huiting S, Lichao Z, Lujia Z, Bei G, Dongzhi W, Yaling S: Construction of a whole-cell catalyst displaying a fungal lipase for effective treatment of oily wastewaters. J Mol Catalys Enzym 2011, 71: 166–170. 10.1016/j.molcatb.2011.04.015
3. Jeganaesan J, George N, Amarjeet B: Hydrolytic pretreatment of oily wastewater by immobilized lipase. J Hazard Mater 2007, 145: 127–135. 10.1016/j.jhazmat.2006.11.004
4. Izanloo H, Mesdaghinia A, Nabizadeh R, Nasseri S, Naddafi K, Mahvi AH, Nazmara S: Effect of organic loading on the performance of aerated submerged fixed-film 85 reactor (ASFFR) for crude oil-containing wastewater treatment. Iran J Environ Health Sci Eng 2010, 6: 85–90.
5. Salahi A, Mohammadi T, Rekabdar F, Mahdavi H: Reverse osmosis of refinery oily wastewater effluents. Iran J Environ Health Sci Eng 2010, 7: 413–422.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献