Author:
Chuang Jing-Yuan,Kuo Hsiao-Hui,Wang Pei-Han,Su Chih-Jou,Yih Ling-Huei
Abstract
AbstractNitrogen permease regulator-like 2 (NPRL2/TUSC4) is known to exert both tumor-suppressing and oncogenic effects in different types of cancers, suggesting that its actions are context dependent. Here, we delineated the molecular and functional effects of NPRL2 in malignantly transformed bronchial epithelial cells. To do so, we depleted NPRL2 in oncogenic HRas-transduced and malignantly transformed human bronchial epithelial (BEAS2B), Ras-AI-T2 cells. Intriguingly, depletion of NPRL2 in these cells induced activation of mTORC1 downstream signaling, inhibited autophagy, and impaired Ras-AI-T2 cell proliferation both in vitro and in vivo. These results suggest that NPRL2 is required for oncogenic HRas-induced cell transformation. Depletion of NPRL2 increased levels of the DNA damage marker γH2AX, the cell cycle inhibitors p21 and p27, and the apoptosis marker cleaved-PARP. These NPRL2-depleted cells first accumulated at G1 and G2, and later exhibited signs of mitotic catastrophe, which implied that NPRL2 depletion may be detrimental to oncogenic HRas-transformed cells. Additionally, NPRL2 depletion reduced heat shock factor 1/heat shock element- and NRF2/antioxidant response element-directed luciferase reporter activities in Ras-AI-T2 cells, indicating that NPRL2 depletion led to the suppression of two key cytoprotective processes in oncogenic HRas-transformed cells. Overall, our data suggest that oncogenic HRas-transduced and malignantly transformed cells may depend on NPRL2 for survival and proliferation, and depletion of NPRL2 also induces a stressed state in these cells.
Funder
Academia Sinica
National Science and Technology Council, Taiwan
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100–6.
2. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.
3. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76.
4. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019;21(1):63–71.
5. Wei Y, Reveal B, Cai W, Lilly MA. The GATOR1 complex regulates metabolic homeostasis and the response to nutrient stress in Drosophila melanogaster. GBethesda. 2016;6(12):3859–67.