Downregulation of GDF15 suppresses ferroptosis and predicts unfavorable prognosis in clear cell renal cell carcinoma

Author:

Yang Dongliang,He Zhongyin,Lu Jiawei,Yuan Xiaolin,Liu Haiyong,Xue Yagang,Chen Ting,Gu Hongxing

Abstract

Abstract Background Growth differentiation factor 15 (GDF15), a member of the transforming growth factor beta (TGF-β) superfamily, is involved in various pathophysiological processes such as anorexia, obesity, inflammation, and tumorigenesis. However, the role of GDF15 in clear cell renal cell carcinoma (ccRCC) remains poorly understood. Methods Clinical significance of GDF15 in ccRCC as well as other types of human cancers was analyzed using the TCGA PANCAN dataset. Gene Set Enrichment Analysis (GSEA) was used to study the significantly enriched pathways associated with GDF15 expression. qRT-PCR was used to quantitatively assess relative mRNA expression level. Flow cytometry was used to detect cell cycle. CCK-8 assay, colony formation assay, wound healing assay, Transwell migration/invasion assay, and EdU assay were used to comprehensively examine tumor viability and aggressiveness. MDA and iron assays were used to determine ferroptosis-related intracellular changes. Results We found that GDF15 expression is decreased in renal carcinoma tissue. In 769-p and Caki-1 cells, GDF15 knockdown significantly promoted tumor viability, proliferation, and migration. Conversely, overexpression of GDF15 suppressed cell proliferation and invasion. Results from GSEA suggested that GDF15 might play a crucial role in ferroptosis. We further demonstrated that GDF15 is correlated with intracellular iron and lipid peroxidation MDA in 769-p and Caki-1 cells. In summary, we conclude that GDF15 inhibits migration and invasion of ccRCC cells by regulating ferroptosis. Conclusion Our study demonstrates that GDF15 downexpression promotes viability and aggressiveness of ccRCC cells by abolishing ferroptosis, which confers unfavorable patient survival outcomes.

Funder

Zhangjiagang Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Macrophages as a Source and Target of GDF-15;International Journal of Molecular Sciences;2024-07-03

2. GDF15, an Emerging Player in Renal Physiology and Pathophysiology;International Journal of Molecular Sciences;2024-05-29

3. Senescence of endothelial cells promotes phenotypic changes in adventitial fibroblasts: possible implications for vascular aging;Molecular and Cellular Biochemistry;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3