Predictive factors for beneficial application of high-frequency electromagnetics for tumour vaporization and coagulation in neurosurgery

Author:

Ritz Rainer,Heckl Stefan,Safavi-Abbasi Sam,Feigl Guenther C,Krischek Boris,Lüdemann Wolf,Mirzayan Javed M,Koerbel Andrei,Samii Madjid,Tatagiba Marcos,Gharabaghi Alireza

Abstract

Abstract Objective To identify preoperative and intraoperative factors and conditions that predicts the beneficial application of a high-frequency electromagnetic field (EMF) system for tumor vaporization and coagulation. Methods One hundred three subsequent patients with brain tumors were microsurgically treated using the EMF system in addition to the standard neurosurgical instrumentarium. A multivariate analysis was performed regarding the usefulness (ineffective/useful/very helpful/essential) of the new technology for tumor vaporization and coagulation, with respect to tumor histology and location, tissue consistency and texture, patients' age and sex. Results The EMF system could be used effectively during tumor surgery in 83 cases with an essential contribution to the overall success in 14 cases. In the advanced category of effectiveness (very helpful/essential), there was a significant difference between hard and soft tissue consistency (50 of 66 cases vs. 3 of 37 cases). The coagulation function worked well (very helpful/essential) for surface (73 of 103 cases) and spot (46 of 103 cases) coagulation when vessels with a diameter of less than one millimeter were involved. The light-weight bayonet hand piece and long malleable electrodes made the system especially suited for the resection of deep-seated lesions (34 of 52 cases) compared to superficial tumors (19 of 50 cases). The EMF system was less effective than traditional electrosurgical devices in reducing soft glial tumors. Standard methods where also required for coagulation of larger vessels. Conclusion It is possible to identify factors and conditions that predict a beneficial application of high-frequency electromagnetics for tumor vaporization and coagulation. This allows focusing the use of this technology on selective indications.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3