Impact of manual correction over automated segmentation of spectral domain optical coherence tomography

Author:

de Azevedo Alexandre Gomes BortolotiORCID,Takitani Guilherme Eiichi da Silva,Godoy Bruno Rebello,Marianelli Bruna Ferraço,Saraiva Vinicius,Tavares Ivan Maynart,Roisman Luiz

Abstract

Abstract Objective To study the automated segmentation of retinal layers using spectral domain optical coherence tomography (OCT) and the impact of manual correction over segmentation mistakes. Methods This was a retrospective, cross-sectional, comparative study that compared the automated segmentation of macular thickness using Spectralis™ OCT technology (Heidelberg Engineering, Heidelberg, Germany) versus manual segmentation in eyes with no macular changes, macular cystoid edema (CME), and choroidal neovascularization (CNV). Automated segmentation of macular thickness was manually corrected by two independent examiners and reanalyzed by them together in case of disagreement. Results In total, 306 eyes of 254 consecutive patients were evaluated. No statistically significant differences were noted between automated and manual macular thickness measurements in patients with normal maculas, while a statistically significant difference was found in central thickness in patients with CNV and with CME. Segmentation mistakes in macular OCTs were present in 5.3% (5 of 95) in the normal macula group, 16.4% (23 of 140) in the CME group, and 66.2% (47 of 71) in CNV group. The difference between automated and manual macular thickness was higher than 10% in 1.4% (2 of 140) in the CME group and in 28.17% (20 of 71) in the CNV group. Only one case in the normal group had a higher than 10% segmentation error (1 of 95). Conclusion The evaluation of automated segmented OCT images revealed appropriate delimitation of macular thickness in patients with no macular changes or with CME, since the frequency and magnitude of the segmentation mistakes had low impact over clinical evaluation of the images. Conversely, automated macular thickness segmentation in patients with CNV showed a high frequency and magnitude of mistakes, with potential impact on clinical analysis.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3