Abstract
Abstract
Background
Endolaser probes have been designed and sold for single-use only. However, in Brazil, they are not included in the list of single-use medical products that are prohibited from being reprocessed and could potentially be reused if safety requirements are accomplished. Therefore, this study aimed to determine and compare the quality, safety and costs of reprocessed versus original single-use endolaser probes of a specific brand and model.
Methods
The study, conducted at a university hospital in Sao Paulo, Brazil, was divided in two phases. The first one tested the feasibility, sterility and physical integrity of ten reprocessed laser probes. In the second phase, all vitrectomy procedures using endolaser probes (reprocessed and original ones) from August 2017 to October 2019 were evaluated. The operated cases were followed for any signs of infection and number of defective probes for each group were counted. The cost of acquiring a new probe and for all reprocessing stages were evaluated and quantified in US dollars($).
Results
Microbiologic, residual ethilen oxide and microscopic evaluation of integrity of reprocessed laser probes were all within acceptable range. The second phase of this study included 590 endolaser probes, of which 375 were original and 215 were reprocessed. Functionality rates differed significantly between groups. Among the original probes, 373 (99.47%) were functioning and 2 (0.53%) were non-functioning. Among the reprocessed ones, 201 (93.5%) were functioning and 14 (6.5%) were non-functioning (p < .001). The average cost of one reprocessing was $3.00, and the average cost of an original probe was $150.00. Considering the loss rates, potential savings were $147.60 for each once-reprocessed probe. The frequency of infectious endophthalmitis was null in both groups.
Conclusions
Our study showed that a single cycle endolaser probe reprocessing was safe and efficient, not associated with increase in endophthalmitis rate and proved to be significantly cost-effective, even considering a greater malfunction rate when compared to the original devices.
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Charles S. Endophotocoagulation. Retina. 1981;1:117–20.
2. Novack R. The evolution of laser technology for retinal applications. Retina Today. January/February 2009.
3. Smiddy WE. Diode endolaser photocoagulation. Arch Ophthalmol. 1992;110:1172–4.
4. Brazil. Ministry of Health; National Health Surveillance Agency (ANVISA). Ordinance no. 4, of February 7, 1986. Deals with the normalization of the use and reuse of disposable medical and hospital materials in the country. Brasilia; 1986. http://www.anvisa.gov.br/legis/portarias/04_86.htm.
5. Brazil. Ministry of Health. National Health Surveillance Agency. Resolution RDC n. 156, of August 11, 2006. Provides for the registration, labeling and reprocessing of medical products and provides other measures. Brasilia; 2006. http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2006/res0156_11_08_2006.html.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献