Abstract
Abstract
Background
To evaluate the contribution of large-cube 30° × 25° optical coherence tomography (OCT) in the characterization of diabetic macular edema (DME) by assessing its extent and the presence of additional retinal edemas and to evaluate the factors that influenced their occurrence.
Methods
This retrospective study enrolled patients with diabetes who presented with retinal edema detected by horizontal large-cube 30° × 25° (8.7 × 7.3 mm) OCT. Two individualized areas were selected from the thickness map: the area within the 6-mm Early Treatment of Diabetic Retinopathy Study (ETDRS) grid, and that outside the ETDRS grid. Retinal edemas located within the ETDRS grid were designated as “main DME” and those located outside the ETDRS grid were designated as “peripheral retinal edemas.” For each area, OCT features were assessed while the extent of the main DME and the presence of peripheral retinal oedema were analysed in the area outside the ETDRS grid. Finally, part of included eyes was followed by the same protocol, of which a part benefited from intravitreal injections.
Results
Peripheral events were detected outside the ETDRS area in 279 eyes (74.4%) of the 375 eyes of the 218 patients included in this study: an extension of the main DME outside ETDRS grid in 177 eyes (47.2%) and/or the presence of peripheral retinal edemas in 207 eyes (55.2%). The analysis of associations between main DME and peripheral retinal edemas patterns did not find an association for retinal cyst localization (P = 0.42) while a week association was found fort cyst size (Cramer’s V = 0.188, p = 0.028). Nevertheless, a moderate association was found for the presence of microaneurysms (Cramer’s V = 0.247, p < 0.001) and strong association for hard exudates (Cramer’s V = 0.386, p < 0.001), The binary logistic regression analysis retained the following influencing factors of the occurrence of peripheral events: advanced DR stage (Odds ratio OR = 2.19, p = 0.03), diffuse DME (OR = 7.76, p < 0.001) and its location in outer fields (OR = 7.09, p = 0.006). Likewise, the extension of the main DME outside the ETDRS area in was influenced by the same factors in addition to CMT (OR = 0.98, p = 0.004) while the presence of peripheral retinal edema was influenced by the same factors except the outer location of the Main DME. Finally, from the 94 eyes treated by intravitreal injections, extension of the main DME outside the ETDRS grid was detected in 54 eyes (56.44%) at baseline visit and still remained detectable in 37 eyes (39.36%) after treatment initiation.
Conclusions
Large-cube 30° × 25° OCT allowed for more precise assessment of DME extension and better detection of retinal thickening mainly in the advanced stages of diabetic retinopathy with significant DME whether at the baseline visit or during follow-up. The combination of this protocol with a wider ETDRS grid would enhance DME detection and topography.
Publisher
Springer Science and Business Media LLC