Identification of the most specific markers to differentiate primary pulmonary carcinoma from metastatic gastrointestinal carcinoma to the lung

Author:

Alabdullah BacharORCID,Hadji-Ashrafy Amir

Abstract

Abstract Background A number of biomarkers have the potential of differentiating between primary lung tumours and secondary lung tumours from the gastrointestinal tract, however, a standardised panel for that purpose does not exist yet. We aimed to identify the smallest panel that is most sensitive and specific at differentiating between primary lung tumours and secondary lung tumours from the gastrointestinal tract. Methods A total of 170 samples were collected, including 140 primary and 30 non-primary lung tumours and staining for CK7, Napsin-A, TTF1, CK20, CDX2, and SATB2 was performed via tissue microarray. The data was then analysed using univariate regression models and a combination of multivariate regression models and Receiver Operating Characteristic (ROC) curves. Results Univariate regression models confirmed the 6 biomarkers’ ability to independently predict the primary outcome (p < 0.001). Multivariate models of 2-biomarker combinations identified 11 combinations with statistically significant odds ratios (ORs) (p < 0.05), of which TTF1/CDX2 had the highest area under the curve (AUC) (0.983, 0.960–1.000 95% CI). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 75.7, 100, 100, and 37.5% respectively. Multivariate models of 3-biomarker combinations identified 4 combinations with statistically significant ORs (p < 0.05), of which CK7/CK20/SATB2 had the highest AUC (0.965, 0.930–1.000 95% CI). The sensitivity, specificity, PPV, and NPV were 85.1, 100, 100, and 41.7% respectively. Multivariate models of 4-biomarker combinations did not identify any combinations with statistically significant ORs (p < 0.05). Conclusions The analysis identified the combination of CK7/CK20/SATB2 to be the smallest panel with the highest sensitivity (85.1%) and specificity (100%) for predicting tumour origin with an ROC AUC of 0.965 (p < 0.001; SE: 0.018, 0.930–1.000 95% CI).

Funder

nepean hospital

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

Reference16 articles.

1. Key Statistics for Lung Cancer. [Web article]. 2016; https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html. Accessed 17 July 2017, 2017.

2. Jemal A, Ward EM, Johnson CJ, et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival, J National Cancer Institute. 2017;109(9):djx030.

3. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors. J Thorac Oncol. 2015;10(9):1243–60. https://doi.org/10.1097/JTO.0000000000000630.

4. World Health Organization & International Programme on Chemical Safety. Biomarkers in risk assessment : validity and validation. Geneva: World Health Organization; 2001. https://apps.who.int/iris/handle/10665/42363.

5. Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Colch). 2009;116(1):27–35. https://doi.org/10.1042/CS20080068.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3