Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma

Author:

Feng Min,Deng Yang,Yang Libo,Jing Qiuyang,Zhang Zhang,Xu Lian,Wei Xiaoxia,Zhou Yanyan,Wu Diwei,Xiang Fei,Wang Yizhe,Bao Ji,Bu Hong

Abstract

Abstract Background The scoring of Ki-67 is highly relevant for the diagnosis, classification, prognosis, and treatment in breast invasive ductal carcinoma (IDC). Traditional scoring method of Ki-67 staining followed by manual counting, is time-consumption and inter−/intra observer variability, which may limit its clinical value. Although more and more algorithms and individual platforms have been developed for the assessment of Ki-67 stained images to improve its accuracy level, most of them lack of accurate registration of immunohistochemical (IHC) images and their matched hematoxylin-eosin (HE) images, or did not accurately labelled each positive and negative cell with Ki-67 staining based on whole tissue sections (WTS). In view of this, we introduce an accurate image registration method and an automatic identification and counting software of Ki-67 based on WTS by deep learning. Methods We marked 1017 breast IDC whole slide imaging (WSI), established a research workflow based on the (i) identification of IDC area, (ii) registration of HE and IHC slides from the same anatomical region, and (iii) counting of positive Ki-67 staining. Results The accuracy, sensitivity, and specificity levels of identifying breast IDC regions were 89.44, 85.05, and 95.23%, respectively, and the contiguous HE and Ki-67 stained slides perfectly registered. We counted and labelled each cell of 10 Ki-67 slides as standard for testing on WTS, the accuracy by automatic calculation of Ki-67 positive rate in attained IDC was 90.2%. In the human-machine competition of Ki-67 scoring, the average time of 1 slide was 2.3 min with 1 GPU by using this software, and the accuracy was 99.4%, which was over 90% of the results provided by participating doctors. Conclusions Our study demonstrates the enormous potential of automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on WTS, and the automated scoring of Ki67 can thus successfully address issues of consistency, reproducibility and accuracy. We will provide those labelled images as an open-free platform for researchers to assess the performance of computer algorithms for automated Ki-67 scoring on IHC stained slides.

Funder

National Key Research and Development Program

Technological Innovation Project of Chengdu New Industrial Technology Research Institute

135 project for disciplines of excellence, West China Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3