Characterization of an ETV6-NTRK3 rearrangement with unusual, but highly significant FISH signal pattern in a secretory carcinoma of the salivary gland: a case report

Author:

Wagner FlorianORCID,Greim Ralf,Krebs Kathrin,Luebben Finn,Dimmler Arno

Abstract

Abstract Background Fusions of neurotrophic tropomyosin receptor kinase genes NTRK1, NTRK2 and NTRK3 with various partner genes occur in both common and rare tumours and are of paramount predictive value due to the availability of very effective pan-Trk inhibitors like Larotrectinib and Entrectinib. Detection of NTRK fusions is mainly performed by fluorescence in situ hybridization (FISH) and next generation sequencing (NGS). The case described here showed a very unusual, but highly significant FISH signal pattern with an NTRK3 break apart probe, indicative of a functional NTRK3 rearrangement. Case presentation We describe here the case of a male patient who was originally diagnosed with an adenocarcinoma of the parotid gland without evidence of metastases. After the development of multiple lung metastases, an extensive immunohistochemical and molecular examination of archived tumour tissue including analysis of NTRK was performed. NTRK expression was detected by immunohistochemistry (IHC) and then comprehensively analysed further by FISH, quantitative reverse transcription PCR (RT-qPCR), and NGS. NTRK3 break apart FISH showed multiple and very faint single 3′ signals in addition to fusion signals. Quantitative reverse transcription PCR and NGS confirmed an ETV6:exon5-NTRK3:exon15 fusion. Diagnosis was therefore revised to metastatic secretory carcinoma of the salivary gland, and the patient subsequently treated with Larotrectinib, resulting in persisting partial remission. Conclusions Our findings underline the importance to be aware of non-canonical signal patterns during FISH analysis for detection of NTRK rearrangements. Very faint single 3′ signals can indicate a functional NTRK rearrangement and therefore be of high predictive value.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3