Re-evaluating a historic cohort of sinonasal and skull base mucoepidermoid carcinoma: an institutional experience

Author:

Hu Chunyan,Lin Lan,Ye Ming,Liu Yifeng,Huang Qiang,Yuan Cuncun,Sun Ji,Sun Hui

Abstract

Abstract Aims Primary mucoepidermoid carcinomas (MECs) of the sinonasal tract and nasopharynx are rare entities that represent a diagnostic challenge, especially in biopsy samples. Herein, we present a case series of MECs of the sinonasal and skull base and its mimics to evaluate the clinicopathological and molecular characteristics in order to avoid misdiagnosis. Methods We reviewed the pathology records of patients diagnosed from 2014 to 2022. Thirty MECs were consecutively diagnosed during that period. Results Based on morphological and fluorescence in situ hybridization (FISH) analyses, 30 tumors originally diagnosed as MECs were separated into MAML2 fusion-positive (7 cases) and MAML2 fusion-negative groups (23 cases), in which 14 tumors were positive for the EWSR1::ATF1 fusion; these tumors were reclassified to have hyalinizing clear cell carcinoma (HCCC). The remaining nine MAML2 FISH negative cases were reconfirmed as squamous cell carcinoma (SCC, 3 cases) which showed keratinization and high Ki-67 expression; DEK::AFF2 carcinomas (2 cases), in which DEK gene rearrangement was detected by FISH; and MECs as previously described (4 cases) with typical morphological features. Including 7 MAML2 rearrangements tumors, 11 MEC cases had a male-to-female ratio of 4.5:1, and 6 tumors arose from the nasopharyngeal region, while 5 tumors arose from the sinonasal region. The prognosis of this series of salivary gland-type MECs was favorable. Conclusions Our study confirmed that HCCC runs the risk of being misdiagnosed as MEC in the sinonasal tract and nasopharynx, particularly with biopsy specimens. Careful histological evaluation with supporting molecular testing can facilitate pathological diagnoses.

Funder

Natural Science Foundation of Minhang District, Shanghai

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3