Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images

Author:

Fassler Danielle J.,Abousamra Shahira,Gupta Rajarsi,Chen Chao,Zhao Maozheng,Paredes David,Batool Syeda Areeha,Knudsen Beatrice S.,Escobar-Hoyos Luisa,Shroyer Kenneth R.,Samaras Dimitris,Kurc Tahsin,Saltz Joel

Abstract

Abstract Background Multiplex immunohistochemistry (mIHC) permits the labeling of six or more distinct cell types within a single histologic tissue section. The classification of each cell type requires detection of uniquely colored chromogens localized to cells expressing biomarkers of interest. The most comprehensive and reproducible method to evaluate such slides is to employ digital pathology and image analysis pipelines to whole-slide images (WSIs). Our suite of deep learning tools quantitatively evaluates the expression of six biomarkers in mIHC WSIs. These methods address the current lack of readily available methods to evaluate more than four biomarkers and circumvent the need for specialized instrumentation to spectrally separate different colors. The use case application for our methods is a study that investigates tumor immune interactions in pancreatic ductal adenocarcinoma (PDAC) with a customized mIHC panel. Methods Six different colored chromogens were utilized to label T-cells (CD3, CD4, CD8), B-cells (CD20), macrophages (CD16), and tumor cells (K17) in formalin-fixed paraffin-embedded (FFPE) PDAC tissue sections. We leveraged pathologist annotations to develop complementary deep learning-based methods: (1) ColorAE is a deep autoencoder which segments stained objects based on color; (2) U-Net is a convolutional neural network (CNN) trained to segment cells based on color, texture and shape; and (3) ensemble methods that employ both ColorAE and U-Net, collectively referred to as ColorAE:U-Net. We assessed the performance of our methods using: structural similarity and DICE score to evaluate segmentation results of ColorAE against traditional color deconvolution; F1 score, sensitivity, positive predictive value, and DICE score to evaluate the predictions from ColorAE, U-Net, and ColorAE:U-Net ensemble methods against pathologist-generated ground truth. We then used prediction results for spatial analysis (nearest neighbor). Results We observed that (1) the performance of ColorAE is comparable to traditional color deconvolution for single-stain IHC images (note: traditional color deconvolution cannot be used for mIHC); (2) ColorAE and U-Net are complementary methods that detect six different classes of cells with comparable performance; (3) combinations of ColorAE and U-Net in ensemble methods outperform ColorAE and U-Net alone; and (4) ColorAE:U-Net ensemble methods can be employed for detailed analysis of the tumor microenvironment (TME). Summary We developed a suite of scalable deep learning methods to analyze 6 distinctly labeled cell populations in mIHC WSIs. We evaluated our methods and found that they reliably detected and classified cells in the PDAC tumor microenvironment. We also utilized the ColorAE:U-Net ensemble method to analyze 3 mIHC WSIs with nearest neighbor spatial analysis. We demonstrate a proof of concept that these methods can be employed to quantitatively describe the spatial distribution of immune cells within the tumor microenvironment. These complementary deep learning methods are readily deployable for use in clinical research studies.

Funder

National Cancer Institute

U.S. National Library of Medicine

Pancreatic Cancer Action Network

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3