A risk model based on 10 ferroptosis regulators and markers established by LASSO-regularized linear Cox regression has a good prognostic value for ovarian cancer patients

Author:

Xiong Tingchuan,Wang Yinghong,Zhu Changjun

Abstract

AbstractOvarian cancer is the deadliest gynecologic cancer due to its high rate of recurrence and limited early diagnosis. For certain patients, particularly those with recurring disorders, standard treatment alone is insufficient in the majority of cases. Ferroptosis, an iron- and ROS (reactive oxygen species)-reliant cell death, plays a vital role in the occurrence of ovarian cancer. Herein, subjects from TCGA-OV were calculated for immune scores using the ESTIMATE algorithm and assigned into high- (N = 185) or low-immune (N = 193) score groups; 259 ferroptosis regulators and markers were analyzed for expression, and 64 were significantly differentially expressed between two groups. These 64 differentially expressed genes were applied for LASSO-regularized linear Cox regression for establishing ferroptosis regulators and a markers-based risk model, and a 10-gene signature was established. The ROC curve indicated that the risk score-based curve showed satisfactory predictive efficiency. Univariate and multivariate Cox risk regression analyses showed that age and risk score were risk factors for ovarian cancer patients’ overall survival; patients in the high-risk score group obtained lower immune scores. The Nomogram analysis indicated that the model has a good prognostic performance. GO functional enrichment annotation confirmed again the involvement of these 10 genes in ferroptosis and immune activities. TIMER online analysis showed that risk factors and immune cells were significantly correlated. In conclusion, the risk model based on 10 ferroptosis regulators and markers has a good prognostic value for ovarian cancer patients.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Tianjin Science and Technology Support Program Project

Program for New Century Excellent Talents in University in China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3