Stoichiometric estimates of the biochemical conversion efficiencies in tsetse metabolism

Author:

Custer Adrian V

Abstract

Abstract Background The time varying flows of biomass and energy in tsetse (Glossina) can be examined through the construction of a dynamic mass-energy budget specific to these flies but such a budget depends on efficiencies of metabolic conversion which are unknown. These efficiencies of conversion determine the overall yields when food or storage tissue is converted into body tissue or into metabolic energy. A biochemical approach to the estimation of these efficiencies uses stoichiometry and a simplified description of tsetse metabolism to derive estimates of the yields, for a given amount of each substrate, of conversion product, by-products, and exchanged gases. This biochemical approach improves on estimates obtained through calorimetry because the stoichiometric calculations explicitly include the inefficiencies and costs of the reactions of conversion. However, the biochemical approach still overestimates the actual conversion efficiency because the approach ignores all the biological inefficiencies and costs such as the inefficiencies of leaky membranes and the costs of molecular transport, enzyme production, and cell growth. Results This paper presents estimates of the net amounts of ATP, fat, or protein obtained by tsetse from a starting milligram of blood, and provides estimates of the net amounts of ATP formed from the catabolism of a milligram of fat along two separate pathways, one used for resting metabolism and one for flight. These estimates are derived from stoichiometric calculations constructed based on a detailed quantification of the composition of food and body tissue and on a description of the major metabolic pathways in tsetse simplified to single reaction sequences between substrates and products. The estimates include the expected amounts of uric acid formed, oxygen required, and carbon dioxide released during each conversion. The calculated estimates of uric acid egestion and of oxygen use compare favorably to published experimental measurements. Conclusion This biochemical analysis provides reasonable first estimates of the conversion efficiencies for the major pathways used by tsetse metabolism. These results now enable a deeper analysis of tsetse ecology based on the construction of a dynamic mass-energy budget for tsetse and their populations.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology, Evolution, Behavior and Systematics

Reference59 articles.

1. Kooijman S: Dynamic Energy and Mass Budgets in Biological Systems. 2000, Cambridge University Press, Cambridge, UK, 2

2. Nisbet R, Muller EB, Lika K, Kooijman S: From molecules to ecosystems through dynamic energy budget models. Journal of Animal Ecology. 2000, 69: 913-926. 10.1046/j.1365-2656.2000.00448.x.

3. Kooijman S: Quantitative aspects of metabolic organisation: a conceptual introduction. Philosophical Transactions of the Royal Society of London (B). 2001, 356: 331-349. 10.1098/rstb.2000.0771.

4. Gutierrez A, Baumgärtner J: Multitrophic level models of predator-prey energetics: I. age specific energetics models -- pea aphid Acyrthosiphon pisum (harris) (homoptera: Aphididae) as an example. Candian Entomologist. 1984, 116: 924-932.

5. Gutierrez A: Applied Population Ecology: A Supply-Demand Approach. 1996, John Wiley & Sons, Inc., New York, USA

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3