Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis

Author:

Sun Kunming,Zhou Zheng,Ju Xinxin,Zhou Yang,Lan Jiaojiao,Chen Dongdong,Chen Hongzhi,Liu Manli,Pang Lijuan

Abstract

Abstract Background Combined cell implantation has been widely applied in tissue engineering in recent years. In this meta-analysis, we aimed to establish whether the combined transplantation of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) promotes angiogenesis and tissue repair, compared with transplantation of a single cell type, following tissue injury or during tissue regeneration. Methods The electronic databases PubMed, EMBASE, MEDLINE, Chinese Biomedical Literature, and China National Knowledge Infrastructure were searched in this systematic review and meta-analysis. Eighteen controlled preclinical studies involving MSC and EPC transplantation in animal models of disease, or in coculture in vitro, were included in this review. The vessel density and other functional indexes, which were classified according to the organ source, were used to evaluate the efficiency of cotransplantation. Publication bias was assessed. Results There was no obvious difference in angiogenesis following combined cell transplantation (EPCs and MSCs) and transplantation of EPCs alone; however, an improvement in the function of damaged organs was observed following cotransplantation. In addition, combined cell transplantation significantly promoted tissue recovery in cardiovascular disease, cerebrovascular disease, and during bone regeneration. Compared with combined transplantation (EPCs and MSCs) and transplantation of MSCs alone, cotransplantation significantly promoted angiogenesis and bone regeneration, as well as vessel revascularization and tissue repair in cerebrovascular disease; however, no obvious effects on cardiovascular disease were observed. Conclusions As an exploratory field in the discipline of tissue engineering, MSC and EPC cotransplantation offers advantages, although it is essential to assess the feasibility of this approach before clinical trials can be performed.

Funder

National Natural Science Foundation of China

Corps Doctor Foundation

Youth Science and Technology Talent Cultivation Plan

One Thousand Youth Talents Plan, and the Pairing Program of Shihezi University with Eminent Scholar in Elite University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Reference30 articles.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3