CD51 distinguishes a subpopulation of bone marrow mesenchymal stem cells with distinct migratory potential: a novel cell-based strategy to treat acute myocardial infarction in mice

Author:

Xie Dong-Mei,Li Yuan-Long,Li Jie,Li Qinglang,Lu Guihua,Zhai Yuansheng,Zhang Juhong,Huang Zhibin,Gao XiurenORCID

Abstract

Abstract Background Experimental and clinical trials have demonstrated the efficiency of bone marrow-derived mesenchymal stromal/stem cells (bMSCs) in the treatment of myocardial infarction. However, after intravenous injection, the ineffective migration of engrafted bMSCs to the hearts remains an obstacle, which has an undesirable impact on the efficiency of cell-based therapy. Therefore, we attempted to identify a marker that could distinguish a subpopulation of bMSCs with a promising migratory capacity. Methods Here, CD51-negative and CD51-positive cells were isolated by flow cytometry from Ter119CD45CD31bMSCs and cultured in specifically modified medium. The proliferation ability of the cells was evaluated by 5-ethynyl-2′-deoxyuridine (EdU) staining or continuously monitored during culture, and the differentiation potential was assessed by culturing the cells in the appropriate conditioned media. Wound healing assays, transwell assays and quantitative polymerase chain reaction (qPCR) were used to measure the migratory ability. The mice were subjected to a sham operation or myocardial infarction (MI) by permanently occluding the coronary artery, and green fluorescent protein (GFP)-labelled cells were transplanted into the mice via intravenous infusion immediately after MI. Heart function was measured by echocardiography; infarct myocardium tissues were detected by triphenyl tetrazolium chloride (TTC) staining. Additionally, immunofluorescence staining was used to verify the characteristics of CD51+bMSCs and inflammatory responses in vivo. Statistical comparisons were performed using a two-tailed Student’s t test. Results In this study, the isolated CD51bMSCs and CD51+bMSCs, especially the CD51+ cells, presented a favourable proliferative capacity and could differentiate into adipocytes, osteocytes and chondrocytes in vitro. After the cells were transplanted into the MI mice by intravenous injection, the therapeutic efficiency of CD51+bMSCs in improving left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) was better than that of CD51bMSCs. Compared with CD51bMSCs, CD51+bMSCs preferentially migrated to and were retained in the infarcted hearts at 48 h and 8 days after intravenous injection. Accordingly, the migratory capacity of CD51+bMSCs exceeded that of CD51bMSCs in vitro, and the former cells expressed higher levels of chemokine receptors or ligands. Interestingly, the retained CD51+bMSCs retained in the myocardium possessed proliferative potential but only differentiated into endothelial cells, smooth muscle cells, fibroblasts or cardiomyocytes. Transplantation of CD51+bMSCs partially attenuated the inflammatory response in the hearts after MI, while the potential for inflammatory suppression was low in CD51bMSC-treated mice. Conclusions These findings indicated that the CD51-distinguished subpopulation of bMSCs facilitated proliferation and migration both in vitro and in vivo, which provided a novel cell-based strategy to treat acute MI in mice by intravenous injection.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3