Generation of individualized immunocompatible endothelial cells from HLA-I-matched human pluripotent stem cells

Author:

Song Chanchan,Wang Linli,Li Qingyang,Liao Baoyi,Qiao Weihua,Li Qiang,Dong Nianguo,Li LiangpingORCID

Abstract

Abstract Background Endothelial cells (ECs) derived from human-induced pluripotent stem cell (iPSC) are a valuable cell resource for cardiovascular regeneration. To avoid time-consuming preparation from primary autologous cells, the allogeneic iPSC-ECs are being expected to become “off-the-shelf” cell products. However, allorejection caused by HLA mismatching is a major barrier for this strategy. Although the “hypoimmunogenic” iPSCs could be simply generated by inhibition of HLA-I expression via β-2 microglobulin knockout (B2M KO), the deletion of HLA-I expression will activate natural killer (NK) cells, which kill the HLA-I negative cells. To inhibit NK activation, we proposed to generate HLA-matched iPSCs based on patient’s HLA genotyping by HLA exchanging approach to express the required HLA allele. Methods To establish a prototype of HLA exchanging system, the expression of HLA-I molecules of iPSCs was inhibited by CRISPR/Cas9-mediated B2M KO, and then HLA-A*11:01 allele, as a model molecule, was introduced into B2M KO iPSCs by lentiviral gene transfer. HLA-I-modified iPSCs were tested for their pluripotency and ability to differentiate into ECs. The stimulation of iPSC-EC to allogeneic T and NK cells was detected by respective co-culture of PBMC-EC and NK-EC. Finally, the iPSC-ECs were used as the seeding cells to re-endothelialize the decellularized valves. Results We generated the iPSCs only expressed one HLA-A allele (HLA-A *11:01) by B2M KO plus HLA gene transfer. These HLA-I-modified iPSCs maintained pluripotency and furthermore were successfully differentiated into functional ECs assessed by tube formation assay. Single HLA-A*11:01-matched iPSC-ECs significantly less induced the allogeneic response of CD8+ T cell and NK cells expressing matched HLA-A*11:01 and other HLA-A,-B and -C alleles. These cells were successfully used to re-endothelialize the decellularized valves. Conclusions In summary, a simple HLA-I exchanging system has been created by efficient HLA engineering of iPSCs to evade both of the alloresponse of CD8+ T cells and the activation of NK cells. This technology has been applied to generate iPSC-ECs for the engineering of cellular heart valves. Our strategy should be extremely useful if the “off-the-shelf” and “non-immunogenic” allogeneic iPSCs were created for the common HLA alleles.

Funder

National Key Research & Development Projects

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3