The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review

Author:

Wang Siyi,Li Rong,Xia Dandan,Zhao Xiao,Zhu Yuan,Gu Ranli,Yoon Jungmin,Liu YunsongORCID

Abstract

Abstract Introduction To repair bone defects, a variety of bone substitution materials have been used, such as ceramics, metals, natural and synthetic polymers, and combinations thereof. In recent decades, a wide range of synthetic polymers have been used for bone regeneration. These polymers have the advantages of biocompatibility, biodegradability, good mechanical properties, low toxicity, and ease of processing. However, when used alone, they are unable to achieve ideal bone formation. Incorporating zinc (Zn) into synthetic polymers has been considered, as previous studies have shown that Zn2+ promotes stem cell osteogenesis and mineral deposition. The purpose of this systematic review was to provide an overview of the application and effectiveness of Zn in synthetic polymers for bone regeneration, whether used alone or in combination with other biomaterials. This study was performed according to the PRISMA guidelines. Materials and methods A search of the PubMed, Embase, and the Cochrane Library databases for articles published up to June 2020 revealed 153 relevant studies. After screening the titles, abstracts, and full texts, 13 articles were included in the review; 9 of these were in vitro, 3 were in vivo, and 1 included both in vitro and in vivo experiments. Results At low concentrations, Zn2+ promoted cell proliferation and osteogenic differentiation, while high-dose Zn2+ resulted in cytotoxicity and inhibition of osteogenic differentiation. Additionally, one study showed that Zn2+ reduced apatite formation in simulated body fluid. In all of the in vivo experiments, Zn-containing materials enhanced bone formation. Conclusions At appropriate concentrations, Zn-doped synthetic polymer materials are better able to promote bone regeneration than materials without Zn.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3