Clinical application of a double-modified sulfated bacterial cellulose scaffold material loaded with FGFR2-modified adipose-derived stem cells in urethral reconstruction

Author:

Zhu Zhenpeng,Yang Jiayu,Ji Xing,Wang Zicheng,Dai Chengxiang,Li Suke,Li Xuesong,Xie Yajie,Zheng Yudong,Lin JianORCID,Zhou Liqun

Abstract

Abstract Background Urethral stricture and reconstruction are one of the thorny difficult problems in the field of urology. The continuous development of tissue engineering and biomaterials has given new therapeutic thinking to this problem. Bacterial cellulose (BC) is an excellent biomaterial due to its accessibility and strong plasticity. Moreover, adipose-derived stem cells (ADSCs) could enhance their wound healing ability through directional modification. Methods First, we used physical drilling and sulfonation in this study to make BC more conducive to cell attachment and degradation. We tested the relevant mechanical properties of these materials. After that, we attached Fibroblast Growth Factor Receptor 2 (FGFR2)-modified ADSCs to the material to construct a urethra for tissue engineering. Afterward, we verified this finding in the male New Zealand rabbit model and carried out immunohistochemical and imaging examinations 1 and 3 months after the operation. At the same time, we detected the potential biological function of FGFR2 by bioinformatics and a cytokine chip. Results The results show that the composite has excellent repairability and that this ability is correlated with angiogenesis. The new composite in this study provides new insight and therapeutic methods for urethral reconstruction. The preliminary mechanism showed that FGFR2 could promote angiogenesis and tissue repair by promoting the secretion of Vascular Endothelial Growth Factor A (VEGFA) from ADSCs. Conclusions Double-modified sulfonated bacterial cellulose scaffolds combined with FGFR2-modified ADSCs provide new sight and treatments for patients with urethral strictures.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3