Author:
Li Xiaoxi,Luo Sai,Chen Xinyao,Li Shasha,Hao Lijun,Yang Dan
Abstract
Abstract
Background
Acne is a chronic facial disease caused by Propionibacterium acnes, which proliferates within sebum-blocked skin follicles and increases inflammatory cytokine production. Several therapeutic drugs and products have been proposed to treat acne, yet no single treatment that ensures long-term treatment efficacy for all patients is available. Here, we explored the use of facial autologous fat transplant of adipose-derived stem cells (ADSCs) to dramatically reduce acne lesions.
Methods
THP-1 cells were treated with active P. acnes for 24 h at different multiplicities of infection, and alterations in inflammatory factors were detected. To study the effect of THP-1 on inflammasome-related proteins, we first co-cultured ADSCs with THP-1 cells treated with P. acnes and evaluated the levels of these proteins in the supernatant. Further, an acne mouse model injected with ADSCs was used to assess inflammatory changes.
Results
Propionibacterium acnes-mediated stimulation of THP-1 cells had a direct correlation with the expression of active caspase-1 and interleukin (IL)-1β in an infection-dependent manner. ADSCs significantly reduced the production of IL-1β induced by P. acnes stimulation through the reactive oxygen species (ROS)/Nod-like receptor family pyrin domain-containing 3 (NLRP3)/caspase-1 pathway. The results showed that ADSCs inhibit the skin inflammation induced by P. acnes by blocking the NLRP3 inflammasome via reducing the secretion of IL-1β in vivo.
Conclusions
Our findings suggest that ADSCs can alter IL-1β secretion by restricting the production of mitochondria ROS, thereby inhibiting the NLRP3/caspase-1 pathway in P. acnes-induced inflammatory responses. This study indicates that anti‐acne therapy can potentially be developed by targeting the NLRP3 inflammasome.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Postgraduate Research & Practical Innovation Program of Harbin Medical University
President Foundation of The First Affiliated Hospital of Harbin Medical University
Applied Technology Research and Development Project of Heilongjiang Province
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献