Author:
Zhang Xiaochen,Yan Qing,Liu Xulin,Gao Jie,Xu Yuerong,Jin Zuolin,Qin Wen
Abstract
Abstract
Background
The osteogenic differentiation capacity of periodontal mesenchymal stem cells (PDLSCs) can be influenced by different levels of static mechanical strain (SMS) in an inflammatory microenvironment. Long non-coding RNAs (lncRNAs) are involved in various physiological processes. However, the mechanisms by which lncRNAs regulate the osteogenic differentiation of PDLSCs remain unclear.
Methods
We investigated the responses of PDLSCs obtained from periodontitis patients and healthy people to 8% and 12%SMS. Gene microarray and bioinformatics analyses were implemented and identified lncRNA00638 as a target gene for the osteogenesis of PDLSCs from periodontitis patients under SMS. Competing endogenous RNA (ceRNA) network analysis was applied and predicted interactions among lncRNA00638, miRNA-424-5p, and fibroblast growth factor receptor 1 (FGFR1). Gene expression levels were regulated by lentiviral vectors. Cell Counting Kit-8 assays, alkaline phosphatase assays, and Alizarin Red S staining were used to examine the osteogenic potential. RT-qPCR and Western blot were performed to detect the expression levels of related genes and proteins.
Results
We found that 8% and 12% SMS exerted distinct effects on HPDLSCs and PPDLSCs, with 12% SMS having the most significant effect. By microarray analysis, we detected differentially expressed lncRNAs/mRNAs between 12% SMS strained and static PPDLSCs, among which lncRNA00638 was detected as a positive target gene to promote the osteogenic differentiation of PPDLSCs under SMS loading. Mechanistically, lncRNA00638 may act as a ceRNA for miR-424-5p to compete with FGFR1. In this process, lncRNA00638 and miR-424-5p suppress each other and form a network to regulate FGFR1.
Conclusions
Our findings demonstrate that the lncRNA00638/miRNA-424-5p/FGFR1 regulatory network is actively involved in the regulation of PDLSC osteogenic differentiation from periodontitis patients under SMS loading, which may provide evidence for optimizing orthodontic treatments in patients with periodontitis.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献