Author:
Qiu Zhenhua,Zhong Zhihui,Zhang Yuehan,Tan Haoling,Deng Bo,Meng Guohuang
Abstract
Abstract
Background
Renal tubular epithelial–myofibroblast transdifferentiation (EMT) plays a key role in the regulation of renal fibrosis. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) play a crucial role in alleviating renal fibrosis and injury. Additionally, hucMSC-derived exosomes contain numerous microRNAs (miRNAs). However, it is unclear whether mesenchymal stem cells can regulate the transforming growth factor (TGF)-β1-induced EMT of human renal tubular epithelial cells (RTECs) through exosomal miRNAs.
Method
HK-2, a human RTEC line, was co-treated with TGF-β1 and hucMSC-derived exosomes. Additionally, TGF-β1-treated HK-2 cells were transfected with a miR-335-5p mimic and disintegrin and metalloproteinase domain-containing protein 19 (ADAM19)-overexpression plasmid. miR-335-5p expression and ADAM19 protein and inflammation levels were measured via quantitative reverse transcription polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assays, respectively.
Results
TGF-β1 treatment changed the shape of HK-2 cells from a cobblestone morphology to a long spindle shape, accompanied by an increase in interleukin (IL)-6, tumor necrosis factor-α, IL-1β, collagen I, collagen III, α-smooth muscle actin, vimentin, and N-cadherin protein levels, whereas E-cadherin protein levels were reduced in these HK-2 cells, suggesting that TGF-β1 treatment induced the inflammation and EMT of HK-2 cells. HucMSC-exosomes improved the inflammation and EMT phenotype of TGF-β1-induced HK-2 cells by transferring miR-335-5p. miR-335-5p was found to bind the ADAM19 3′-untranslated region to reduce ADAM19 protein levels. Additionally, miR-335-5p improved the inflammation and EMT phenotype of HK-2 cells by reducing ADAM19 protein levels with TGF-β1 induction.
Conclusions
HucMSC-derived exosomal miR-335-5p attenuates the inflammation and EMT of HK-2 cells by reducing ADAM19 protein levels upon TGF-β1 induction. This study provides a potential therapeutic strategy and identifies targets for clinically treating renal fibrosis.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献