Organ-specific extracellular matrix directs trans-differentiation of mesenchymal stem cells and formation of salivary gland-like organoids in vivo

Author:

Tran Olivia N.,Wang Hanzhou,Li Shengxian,Malakhov Andrey,Sun Yuyang,Abdul Azees Parveez A.,Gonzalez Aaron O.,Cao Brian,Marinkovic Milos,Singh Brij B.,Dean David D.,Yeh Chih-KoORCID,Chen Xiao-DongORCID

Abstract

Abstract Background Current treatments for salivary gland (SG) hypofunction are palliative and do not address the underlying cause or progression of the disease. SG-derived stem cells have the potential to treat SG hypofunction, but their isolation is challenging, especially when the tissue has been damaged by disease or irradiation for head and neck cancer. In the current study, we test the hypothesis that multipotent bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model are capable of trans-differentiating to the SG epithelial cell lineage when induced by a native SG-specific extracellular matrix (SG-ECM) and thus may be a viable substitute for repairing damaged SGs. Methods Rat BM-MSCs were treated with homogenates of decellularized rat SG-ECM for one hour in cell suspension and then cultured in tissue culture plates for 7 days in growth media. By day 7, the cultures contained cell aggregates and a cell monolayer. The cell aggregates were hand-selected under a dissecting microscope, transferred to a new tissue culture dish, and cultured for an additional 7 days in epithelial cell differentiation media. Cell aggregates and cells isolated from the monolayer were evaluated for expression of SG progenitor and epithelial cell specific markers, cell morphology and ultrastructure, and ability to form SG-like organoids in vivo. Results The results showed that this approach was very effective and guided the trans-differentiation of a subpopulation of CD133-positive BM-MSCs to the SG epithelial cell lineage. These cells expressed amylase, tight junction proteins (Cldn 3 and 10), and markers for SG acinar (Aqp5 and Mist 1) and ductal (Krt 14) cells at both the transcript and protein levels, produced intracellular secretory granules which were morphologically identical to those found in submandibular gland, and formed SG-like organoids when implanted in the renal capsule in vivo. Conclusions The results of this study suggest the feasibility of using autologous BM-MSCs as an abundant source of stem cells for treating SG hypofunction and restoring the production of saliva in these patients.

Funder

U.S. Department of Veterans Affairs

National Institute of Dental and Craniofacial Research

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3