Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis

Author:

Chen Taiqiu,Peng Yan,Hu Wenjun,Shi Huihong,Li Pengfei,Que Yichen,Qiu Jincheng,Qiu Xianjian,Gao Bo,Zhou Hang,Chen Yanbo,Zhu Yuanxin,Li Shaoguang,Liang Anjing,Gao WenjieORCID,Huang Dongsheng

Abstract

Abstract Background Human mesenchymal stem cells (hMSCs) have been proven to have inherent chondrogenic differentiation potential, which appears to be used in cartilage regeneration. Increasing evidence suggests that irisin enhances osteoblast differentiation of MSCs, but little is known about its potential on chondrogenic differentiation. Methods In the study, we investigated the effects of irisin on chondrogenic differentiation of hMSCs using a high-density pellet culture system. The cartilage pellets were evaluated by morphology, and the metabolism of cartilage matrix was detected by qPCR, western blot and immunohistochemistry. Next, RNA-seq was performed to explore the underlying mechanism. Furthermore, using the transduction of plasmid, miRNAs mimics and inhibitor, the activation of Rap1/PI3K/AKT axis, the expression level of SIPA1L2, and the functional verification of miR-125b-5p were detected on day 7 of chondrogenic differentiation of hMSCs. Results Compared with the controls, we found that irisin treatment could significantly enhance the chondrogenic differentiation of hMSCs, enlarge the induced-cartilage tissue and up-regulate the expression levels of cartilage markers. RNA-seq indicated that irisin activated the Rap1 and PI3K/AKT signaling pathway, and the lower expression level of SIPA1L2 and the higher expression level of miR-125b-5p were found in irisin-treated group. Further, we found that irisin treatment could up-regulate the expression level of miR-125b-5p, targeting SIPA1L2 and consequently activating the Rap1/PI3K/AKT axis on the process of chondrogenic differentiation of hMSCs. Conclusions Collectively, our study reveals that irisin can enhance chondrogenic differentiation of hMSCs via the Rap1/PI3K/AKT pathway, suggesting that irisin possesses prospects in cartilage regeneration.

Funder

the National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Science and Technology Program of Guangzhou

Fundamental Research Funds of the Central Universities

Postdoctoral Science Foundation of China

Sun Yat-sen Scholarship for Young Scientist for Wenjie Gao

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3