Author:
Pisciotta Alessandra,Riccio Massimo,Carnevale Gianluca,Lu Aiping,De Biasi Sara,Gibellini Lara,La Sala Giovanni B.,Bruzzesi Giacomo,Ferrari Adriano,Huard Johnny,De Pol Anto
Abstract
Abstract
Introduction
Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD.
Methods
Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2′-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses.
Results
Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle.
Conclusion
This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference55 articles.
1. Matsumura K, Ohlendieck K, Ionasescu VV, Tomé FM, Nonaka I, Burghes AH, et al. The role of the dystrophin-glycoprotein complex in the molecular pathogenesis of muscular dystrophies. Neuromuscul Disord. 1993;3:533–5.
2. Emery AE, Muntoni F. Duchenne Muscular Dystrophy. 3rd ed. Oxford, UK: Oxford University Press; 2003.
3. Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;1:CD003725.
4. Drowley L, Okada M, Beckman S, Vella J, Keller B, Tobita K, et al. Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther. 2010;18:1865–73.
5. Gharaibeh B, Lavasani M, Cummins JH, Huard J. Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Res Ther. 2011;2:31.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献