Inflammation-inducible promoters to overexpress immune inhibitory factors by MSCs

Author:

Selich Anton,Fleischauer Jenni,Roepke Tina,Weisskoeppel Luisa,Galla Melanie,von Kaisenberg Constantin,Maus Ulrich A.,Schambach Axel,Rothe MichaelORCID

Abstract

Abstract Background Mesenchymal stromal cells (MSCs) are excessively investigated in the context of inflammation-driven diseases, but the clinical results are often moderate. MSCs are naturally activated by inflammatory signals, which lead to the secretion of immune inhibitory factors in inflamed tissues. Many work groups try to improve the therapeutic outcome of MSCs by genetic modification and the constitutive overexpression of immune modulatory transgenes. However, the ectopic secretion of immune inhibitory transgenes increases the chances of infections, and constitutive transgene expression is not necessary for chronic diseases undergoing different inflammatory stages. Methods We designed and tested inflammation-induced promoters to control transgene expression from integrating lentiviral vectors in human umbilical cord MSCs. Therefore, we investigated different combinations of general transcription factor elements to achieve a minimal promoter with low basal activity. The best candidates were combined with interferon-induced GAS or ISRE DNA motifs. The constructs with the highest transgene expression upon addition of pro-inflammatory cytokines were compared to vectorized promoters from inflammation-induced genes (CD317, CXCL9, CXCL10, CXCL11 and IDO1). Finally, we investigated IL10 as a potential immune inhibitory transgene by transcriptome analyses, ELISA and in an acute lung injury mouse model. Results The synthetic promoters achieved a high and specific transgene expression upon IFN-γ addition. However, the CXCL11 promoter showed synergistic activity upon IFN-γ, TNF-α and IL1-β treatment and surpassed the transgene expression height of all tested promoters in the study. We observed in transcriptome analyses that IL10 has no effect on MSCs and in ELISA that IL10 is only secreted by our genetically modified and activated CXCL11-IL10-MSCs. Finally, transplanted CXCL11-IL10-MSCs increased CD19+ and CD4+ lymphoid cells, and decreased CD11b+ Ly6g myeloid cells in an ALI mouse model. Conclusion These results provide new insights into MSC inflammatory activation and the subsequent translation into a tool for a tailored expression of transgenes in inflammatory microenvironments. The newly developed promoter elements are potentially interesting for other inflamed tissues, and can be combined with other elements or used in other cell types.

Funder

Deutsche Forschungsgemeinschaft

REBIRTH Center for Translational Regenerative Medicine through the State of Lower Saxony

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3