Efficiently generate functional hepatic cells from human pluripotent stem cells by complete small-molecule strategy

Author:

Pan Tingcai,Wang Ning,Zhang Jiaye,Yang Fan,Chen Yan,Zhuang Yuanqi,Xu Yingying,Fang Ji,You Kai,Lin Xianhua,Li Yang,Li Shao,Liang Kangyan,Li Yin-xiong,Gao Yi

Abstract

Abstract Background Various methods have been developed to generate hepatic cells from human pluripotent stem cells (hPSCs) that rely on the combined use of multiple expensive growth factors, limiting industrial-scale production and widespread applications. Small molecules offer an attractive alternative to growth factors for producing hepatic cells since they are more economical and relatively stable. Methods We dissect small-molecule combinations and identify the ideal cocktails to achieve an optimally efficient and cost-effective strategy for hepatic cells differentiation, expansion, and maturation. Results We demonstrated that small-molecule cocktail CIP (including CHIR99021, IDE1, and PD0332991) efficiently induced definitive endoderm (DE) formation via increased endogenous TGF-β/Nodal signaling. Furthermore, we identified that combining Vitamin C, Dihexa, and Forskolin (VDF) could substitute growth factors to induce hepatic specification. The obtained hepatoblasts (HBs) could subsequently expand and mature into functional hepatocyte-like cells (HLCs) by the established chemical formulas. Thus, we established a stepwise strategy with complete small molecules for efficiently producing scalable HBs and functionally matured HLCs. The small-molecule-derived HLCs displayed typical functional characteristics as mature hepatocytes in vitro and repopulating injured liver in vivo. Conclusion Our current small-molecule-based hepatic generation protocol presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery using.

Funder

National Key R&D Program of China

Sino-German rapid response funding call for COVID-19 related research

Guangzhou Municipal Health and Family Planning Commission

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Key Research and Development Plan

Guangzhou Science and technology planning project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3