Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink

Author:

Grönroos Pyry,Mörö Anni,Puistola Paula,Hopia Karoliina,Huuskonen Maija,Viheriälä Taina,Ilmarinen Tanja,Skottman HeliORCID

Abstract

Abstract Background Human corneal endothelial cells lack regenerative capacity through cell division in vivo. Consequently, in the case of trauma or dystrophy, the only available treatment modality is corneal tissue or primary corneal endothelial cell transplantation from cadaveric donor which faces a high global shortage. Our ultimate goal is to use the state-of-the-art 3D-bioprint technology for automated production of human partial and full-thickness corneal tissues using human stem cells and functional bioinks. In this study, we explore the feasibility of bioprinting the corneal endothelium using human pluripotent stem cell derived corneal endothelial cells and hydrazone crosslinked hyaluronic acid bioink. Methods Corneal endothelial cells differentiated from human pluripotent stem cells were bioprinted using optimized hydrazone crosslinked hyaluronic acid based bioink. Before the bioprinting process, the biocompatibility of the bioink with cells was first analyzed with transplantation on ex vivo denuded rat and porcine corneas as well as on denuded human Descemet membrane. Subsequently, the bioprinting was proceeded and the viability of human pluripotent stem cell derived corneal endothelial cells were verified with live/dead stainings. Histological and immunofluorescence stainings involving ZO1, Na+/K+-ATPase and CD166 were used to confirm corneal endothelial cell phenotype in all experiments. Additionally, STEM121 marker was used to identify human cells from the ex vivo rat and porcine corneas. Results The bioink, modified for human pluripotent stem cell derived corneal endothelial cells successfully supported both the viability and printability of the cells. Following up to 10 days of ex vivo transplantations, STEM121 positive cells were confirmed on the Descemet membrane of rat and porcine cornea demonstrating the biocompatibility of the bioink. Furthermore, biocompatibility was validated on denuded human Descemet membrane showing corneal endothelial -like characteristics. Seven days post bioprinting, the corneal endothelial -like cells were viable and showed polygonal morphology with expression and native-like localization of ZO-1, Na+/K+-ATPase and CD166. However, mesenchymal-like cells were observed in certain areas of the cultures, spreading beneath the corneal endothelial-like cell layer. Conclusions Our results demonstrate the successful printing of human pluripotent stem cell derived corneal endothelial cells using covalently crosslinked hyaluronic acid bioink. This approach not only holds promise for a corneal endothelium transplants but also presents potential applications in the broader mission of bioprinting the full-thickness human cornea.

Funder

Jane ja Aatos Erkon Säätiö

Academy of Finland

Suomen Kulttuurirahasto

Pirkanmaan Rahasto

Instrumentariumin Tiedesäätiö

Silmä- ja kudospankkisäätiö

Tampereen Yliopisto

Suomen Silmälääkäriyhdistyksen

Suomen Lääketieteen Säätiö

Päivikki ja Sakari Sohlbergin Säätiö

Tampere University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3