Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation

Author:

Fan Mengke,Shi Huiying,Yao Hailing,Wang Weijun,Zhang Yurui,Jiang Chen,Lin Rong

Abstract

Abstract Background There is a lack of effective therapies for enteric nervous system (ENS) injury. Our previous study showed that transplanted bone marrow-derived mesenchymal stem cells (BMSCs) play a “glia-like cells” role in initiating ENS regeneration in denervated mice. Cellular energy metabolism is an important factor in maintaining the biological characteristics of stem cells. However, how cellular energy metabolism regulates the fate of BMSCs in the ENS-injured microenvironment is unclear. Methods The biological characteristics, energy metabolism, and histone methylation levels of BMSCs following ENS injury were determined. Then, glutamate dehydrogenase 1 (Glud1) which catalyzes the oxidative deamination of glutamate to α-KG was overexpressed (OE) in BMSCs. Further, OE-Glud1 BMSCs were targeted–transplanted into the ENS injury site of denervated mice to determine their effects on ENS regeneration. Results In vitro, in the ENS-injured high-glutamate microenvironment, the ratio of α-ketoglutarate (α-KG) to succinate (P < 0.05), the histone demethylation level (P < 0.05), the protein expression of glial cell markers (P < 0.05), and the gene expression of Glud1 (P < 0.05) were significantly increased. And the binding of H3K9me3 to the GFAP, S100B, and GDNF promoter was enhanced (P < 0.05). Moreover, α-KG treatment increased the monomethylation and decreased the trimethylation on H3K9 (P < 0.01) and H3K27 (P < 0.05) in BMSCs and significantly upregulated the protein expression of glial cell markers (P < 0.01), which was reversed by the α-KG competitive inhibitor D-2-hydroxyglutarate (P < 0.05). Besides, overexpression of Glud1 in BMSCs exhibited increases in monomethylation and decreases in trimethylation on H3K9 (P < 0.05) and H3K27 (P < 0.05), and upregulated protein expression of glial cell markers (P < 0.01). In vivo, BMSCs overexpressing Glud1 had a strong promotion effect on ENS regeneration in denervated mice through H3K9/H3K27 demethylation (P < 0.05), and upregulating the expression of glial cell protein (P < 0.05). Conclusions BMSCs overexpressing Glud1 promote the expression of glial cell markers and ENS remodeling in denervated mice through regulating intracellular α-KG and H3K9/H3K27 demethylation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3