Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p

Author:

Shao Mingyang,Xu Qing,Wu Zhenru,Chen Yuwei,Shu Yuke,Cao Xiaoyue,Chen Menglin,Zhang Bo,Zhou Yongjie,Yao Rong,Shi YujunORCID,Bu Hong

Abstract

Abstract Background Using a toxin-induced nonhuman primate model of acute liver failure (ALF), we previously reported that peripheral infusion of human umbilical cord mesenchymal stem cells (hUC-MSCs) strongly suppresses the activation of circulating monocytes and interleukin-6 (IL-6) production, thereby disrupting the development of a cytokine storm and improving the prognosis of monkeys. MSCs are considered to play a therapeutic role under different stresses by adaptively producing specific factors, prompting us to investigate the factors that hUC-MSCs produce in response to high serum levels of IL-6, which plays a critical role in initiating and accelerating ALF. Methods We stimulated hUC-MSCs with IL-6, and the hUC-MSC-derived exosomes were deeply sequenced. The miRNAs in the exosomes that have potential to suppress IL-6-associated signaling pathway were screened, and the role of one of the most possible miRNAs was tested in the mouse model of inflammatory liver injury. Result We determined that miR-455-3p, which is secreted through exosomes and potentially targets PI3K signaling, was highly produced by hUC-MSCs with IL-6 stimulation. The miR-455-3p-enriched exosomes could inhibit the activation and cytokine production of macrophages challenged with lipopolysaccharide (LPS) both in vivo and in vitro. In a chemical liver injury mouse model, enforced expression of miR-455-3p could attenuate macrophage infiltration and local liver damage and reduce the serum levels of inflammatory factors, thereby improving liver histology and systemic disorder. Conclusions miR-455-3p-enriched exosomes derived from hUC-MSCs are a promising therapy for acute inflammatory liver injury.

Funder

Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Health Department of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3