In vitro-generated human muscle reserve cells are heterogeneous for Pax7 with distinct molecular states and metabolic profiles

Author:

Bouche Axelle,Borner Benoit,Richard Chloé,Grand Ysaline,Hannouche Didier,Laumonier ThomasORCID

Abstract

Abstract Background The capacity of skeletal muscles to regenerate relies on Pax7+ muscle stem cells (MuSC). While in vitro-amplified MuSC are activated and lose part of their regenerative capacity, in vitro-generated human muscle reserve cells (MuRC) are very similar to quiescent MuSC with properties required for their use in cell-based therapies. Methods In the present study, we investigated the heterogeneity of human MuRC and characterized their molecular signature and metabolic profile. Results We observed that Notch signaling is active and essential for the generation of quiescent human Pax7+ MuRC in vitro. We also revealed, by immunofluorescence and flow cytometry, two distinct subpopulations of MuRC distinguished by their relative Pax7 expression. After 48 h in differentiation medium (DM), the Pax7High subpopulation represented 35% of the total MuRC pool and this percentage increased to 61% after 96 h in DM. Transcriptomic analysis revealed that Pax7High MuRC were less primed for myogenic differentiation as compared to Pax7Low MuRC and displayed a metabolic shift from glycolysis toward fatty acid oxidation. The bioenergetic profile of human MuRC displayed a 1.5-fold decrease in glycolysis, basal respiration and ATP-linked respiration as compared to myoblasts. We also observed that AMPKα1 expression was significantly upregulated in human MuRC that correlated with an increased phosphorylation of acetyl-CoA carboxylase (ACC). Finally, we showed that fatty acid uptake was increased in MuRC as compared to myoblasts, whereas no changes were observed for glucose uptake. Conclusions Overall, these data reveal that the quiescent MuRC pool is heterogeneous for Pax7 with a Pax7High subpopulation being in a deeper quiescent state, less committed to differentiation and displaying a reduced metabolic activity. Altogether, our data suggest that human Pax7High MuRC may constitute an appropriate stem cell source for potential therapeutic applications in skeletal muscle diseases.

Funder

FSRMM

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3