Stem cell-derived exosomes in the treatment of acute myocardial infarction in preclinical animal models: a meta-analysis of randomized controlled trials

Author:

Zheng Yan-li,Wang Wan-da,Cai Ping-yu,Zheng Feng,Zhou Yi-fan,Li Mei-mei,Du Jing-ru,Lin Shu,Lin Hui-liORCID

Abstract

Abstract Background Exosomes (EXOs) derived from stem cells have become a potential new treatment for acute myocardial infarction (AMI). However, their impact is still not fully understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EXOs on AMI in preclinical animal models. Methods We searched PubMed, EMBASE, and the Web of Science from September 1, 1980 to September 1, 2021, to retrieve the studies reporting the therapeutic effects of EXOs on AMI animal models. Secondary endpoints include the fractional shortening (FS), infarct size (IS), fibrosis area (FA), the TNF-α, IL-6 and IL-10 levels, the apoptosis rate and the number of autophagic vesicles. Two authors independently screened the articles based on inclusion and exclusion criteria. All statistical analyses were conducted using Stata14.0. Results Ten studies satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of LVEF (WMD = 3.67%; 95% CI 2.28–5.07%; P = 0.000), FS (WMD = 3.69%; 95% CI 2.06–5.33%; P = 0.000), IS (WMD = −4.52%, 95% CI − 7.14 to − 1.9%; P = 0.001), and FA (WMD = −7.04%, 95% CI − 8.74 to − 5.34%; P = 0.000), TNF-α (WMD = −3.09, 95% CI − 5.47 to − 0.72; P = 0.011), TL-6 (WMD = −6.34, 95% CI − 11.2 to − 1.49; P < 0.01), TL-10 (WMD = 6.37, 95% CI 1.53–11.21; P = 0.01), the apoptosis rate (WMD = −8.23, 95% CI − 15.29 to − 1.17; P = 0.000), and the number of autophagic vesicles (WMD = −4.52, 95% CI − 7.43 to − 1.62; P = 0.000). Subgroup analysis showed that the EXOs were derived from HMSCs. Subgroup analysis showed that the EXOs derived from HMSCs, and that exosome therapy immediately after myocardial infarction can better improve the LVEF. Conclusions: EXOs therapy has the potential to improve cardiac function, fibrogenesis, and inflammatory response, as well as reducing cell apoptosis and autophagy in preclinical AMI animal models. This can inform future human clinical trials of EXOs.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3