Sox9-expressing cells promote regeneration after radiation-induced lung injury via the PI3K/AKT pathway

Author:

Chen Shuang,Li Kang,Zhong Xinqi,Wang Ganping,Wang Xiaocheng,Cheng Maosheng,Chen Jie,Chen Zhi,Chen Jianwen,Zhang Caihua,Xiong Gan,Xu Xiuyun,Chen Demeng,Li Heping,Peng Liang

Abstract

Abstract Background Radiation-induced lung injury (RILI) is considered one of the most common complications of thoracic radiation. Recent studies have focused on stem cell properties to obtain ideal therapeutic effects, and Sox9 has been reported to be involved in stem cell induction and differentiation. However, whether Sox9-expressing cells play a role in radiation repair and regeneration remains unknown. Methods We successfully obtained Sox9CreER, RosatdTomato and RosaDTA mice and identified Sox9-expressing cells through lineage tracing. Then, we evaluated the effects of the ablation of Sox9-expressing cells in vivo. Furthermore, we investigated the underlying mechanism of Sox9-expressing cells during lung regeneration via an online single-cell RNA-seq dataset. Results In our study, we demonstrated that Sox9-expressing cells promote the regeneration of lung tissues and that ablation of Sox9-expressing cells leads to severe phenotypes after radiation damage. In addition, analysis of an online scRNA-Seq dataset revealed that the PI3K/AKT pathway is enriched in Sox9-expressing cells during lung epithelium regeneration. Finally, the AKT inhibitor perifosine suppressed the regenerative effects of Sox9-expressing cells and the AKT pathway agonist promotes proliferation and differentiation. Conclusions Taken together, the findings of our study suggest that Sox9-expressing cells may serve as a therapeutic target in lung tissue after RILI.

Funder

Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Foundation Construction for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3